The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100620
PDF

Forecasting Feature Selection based on Single Exponential Smoothing using Wrapper Method

Author 1: Ani Dijah Rahajoe

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature selection is one way to simplify classification process. The purpose is only the selected features are used for classification process and without decreasing its performance when compared without feature selection. This research uses new feature matrix as the base for selection. This feature matrix contains forecasting result using Single Exponential Smoothing (FMF(SES)). The method uses wrapper method of GASVM and it is named FMF(SES)-GASVM. The result of this research is compared with other methods such as GA Bayes, Forward Bayes and Backward Bayes. The result shows that FMF(SES)-GASVM has maximum accuracy when compared of FMF(SES)-GA Bayes, FMF(SES)-Forward Bayes, FMF(SES)-Backward Bayes, however the number of selected features are more than if compared with FMF(SES)-GA Bayes and FMF(SES)-Forward Bayes.

Keywords: Single exponential smoothing; forecasting; feature selection; genetic algorithm

Ani Dijah Rahajoe, “Forecasting Feature Selection based on Single Exponential Smoothing using Wrapper Method” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100620

@article{Rahajoe2019,
title = {Forecasting Feature Selection based on Single Exponential Smoothing using Wrapper Method},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100620},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100620},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {Ani Dijah Rahajoe}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org