The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Bio-inspired Think-and-Share Optimization for Big Data Provenance in Wireless Sensor Networks

Author 1: Adel Alkhalil
Author 2: Rabie Ramadan
Author 3: Aakash Ahmad

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0100650

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Big data systems are being increasingly adopted by the enterprises exploiting big data applications to manage data-driven process, practices, and systems in an enterprise wide context. Specifically, big data systems and their underlying applications empower enterprises with analytical decision making (e.g., recommender/decision support systems) to optimize organizational productivity, competitiveness, and growth. Despite these benefits, big data applications face some challenges that include but not limited to security and privacy, authenticity, and reliability of critical data that may result in propagation of false information across systems. Data provenance as an approach and enabling mechanism (to identify the origin, manage the creation, and track the propagation of information etc.) can be a solution to above mentioned challenges for data management in an enterprise context. Data provenance solution(s) can help stakeholders and enterprises to assess the quality of data along with authenticity, reliability, and trust of information on the basis of identity, reproducibility and integrity of data. Considering the wide spread adoption of big data applications and the needs for data provenance, this paper focuses on (i) analyzing state-of-the-art for holistic presentation of provenance in big-data applications (ii) proposing a bio-inspired approach with underlying algorithm that exploits human thinking approach to support data provenance in Wireless Sensor Networks (WSNs). The proposed ‘Think-and-Share Optimization’ (TaSO) algorithms modularizes and automates data provenance in WSNs that are deployed and operated in enterprises. Evaluation of TaSO algorithm demonstrates its efficiency in terms of connectivity, closeness to the sink node, coverage, and execution time. The proposed research contextualizes bio-inspired computation to enable and optimize data provenance in WSNs. Future research aims to exploit machine learning techniques (with underlying algorithms) to automate data provenance for big data systems in networked environments.

Keywords: Big data systems; data provenance; fuzzy logic; bio-inspired computing

Adel Alkhalil, Rabie Ramadan and Aakash Ahmad, “Bio-inspired Think-and-Share Optimization for Big Data Provenance in Wireless Sensor Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100650

@article{Alkhalil2019,
title = {Bio-inspired Think-and-Share Optimization for Big Data Provenance in Wireless Sensor Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100650},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100650},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {Adel Alkhalil and Rabie Ramadan and Aakash Ahmad}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org