The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100666
PDF

A Comprehensive Collaborating Filtering Approach using Extended Matrix Factorization and Autoencoder in Recommender System

Author 1: Mahamudul Hasan
Author 2: Falguni Roy
Author 3: Tasdikul Hasan
Author 4: Lafifa Jamal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recommender system is an approach where users get suggestions based on their previous preferences. Nowadays, people are overwhelmed by the huge amount of information that is being present in any system. Sometimes, it is difficult for a user to find an appropriate item by searching the desired content. Recommender system assists users by providing suggestions of re-quired information or items based on the similar features among the users. Collaborative filtering is one of the most re-known process of recommender system where the recommendation is done by similar users or similar items. Matrix factorization is an approach which can be used to decompose a matrix into two or more matrix to generate features. Again, autoencoder is a deep learning based technique which is used to find hidden features of an object. In this paper, features are calculated using extended matrix factorization and autoencoder and then a new similarity metric has been introduced that can calculate the similarity efficiently between each pair of users. Then, an improvement of the prediction method is introduced to predict the rating accurately by using the proposed similarity measure. In the experimental section, it has been shown that our proposed method outperforms in terms of mean absolute error, precision, recall, f-measures, and average reciprocal hit rank.

Keywords: Recommender system; deep learning; autoencoder; matrix factorization; similarity measures

Mahamudul Hasan, Falguni Roy, Tasdikul Hasan and Lafifa Jamal, “A Comprehensive Collaborating Filtering Approach using Extended Matrix Factorization and Autoencoder in Recommender System” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100666

@article{Hasan2019,
title = {A Comprehensive Collaborating Filtering Approach using Extended Matrix Factorization and Autoencoder in Recommender System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100666},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100666},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {Mahamudul Hasan and Falguni Roy and Tasdikul Hasan and Lafifa Jamal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org