The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

An Effective Framework for Tweet Level Sentiment Classification using Recursive Text Pre-Processing Approach

Author 1: Muhammad Bux Alvi
Author 2: Naeem A. Mahoto
Author 3: Mukhtiar A. Unar
Author 4: M. Akram Shaikh

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0100674

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With around 330 million people around the globe tweet 6000 times per second to express their feelings about a product, policy, service, or an event. Twitter message majorly consists of thoughts. Thoughts are mostly expressed as a text and it is an open challenge to extract some insight from free text. The scope of this work is to build an effective tweet level sentiment classification framework that may use these thoughts to know collective sentiment of the folk on a particular subject. Furthermore, this work also analyses the impact of proposed tweet level recursive text pre-processing approach on overall classification results. This work achieved up to 4 points accuracy improvement over baseline approach besides mitigating feature vector space.

Keywords: Machine learning; recursive text pre-processing; sentiment analysis; sentiment classification framework; Twitter

Muhammad Bux Alvi, Naeem A. Mahoto, Mukhtiar A. Unar and M. Akram Shaikh, “An Effective Framework for Tweet Level Sentiment Classification using Recursive Text Pre-Processing Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100674

@article{Alvi2019,
title = {An Effective Framework for Tweet Level Sentiment Classification using Recursive Text Pre-Processing Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100674},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100674},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {Muhammad Bux Alvi and Naeem A. Mahoto and Mukhtiar A. Unar and M. Akram Shaikh}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org