The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100744
PDF

Cyber Terrorist Detection by using Integration of Krill Herd and Simulated Annealing Algorithms

Author 1: Hassan Awad Hassan Al-Sukhni
Author 2: Azuan Bin Ahmad
Author 3: Madihah Mohd Saudi
Author 4: Najwa Hayaati Mohd Alwi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 7, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a technique to detect cyber terrorists suspected activities over the net by integrating the Krill Herd and Simulated Annealing algorithms. Three new level of categorizations, including low, high, and interleave have been introduced in this paper to optimize the accuracy rate. Two thousand datasets had been used for training and testing with 10-fold cross validation for this research and the simulations were performed using Matlab®. Based on the conducted experiment, this technique produced 73.01% accuracy rate for the interleave level; thus, outperforming the benchmark work. The findings can be used as a guidance and baseline work for other researchers with the same interest in this area.

Keywords: Krill Herd; web content classification; cyber terrorists; simulating annealing

Hassan Awad Hassan Al-Sukhni, Azuan Bin Ahmad, Madihah Mohd Saudi and Najwa Hayaati Mohd Alwi, “Cyber Terrorist Detection by using Integration of Krill Herd and Simulated Annealing Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 10(7), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100744

@article{Al-Sukhni2019,
title = {Cyber Terrorist Detection by using Integration of Krill Herd and Simulated Annealing Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100744},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100744},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {7},
author = {Hassan Awad Hassan Al-Sukhni and Azuan Bin Ahmad and Madihah Mohd Saudi and Najwa Hayaati Mohd Alwi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org