The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100761
PDF

Efficient Algorithm for Maximal Clique Size Evaluation

Author 1: Ubaida Fatima
Author 2: Saman Hina

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 7, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A large dataset network is considered for computation of maximal clique size (MC). Additionally, its link with popular centrality metrics to decrease uncertainty and complexity and for finding influential points of any network has also been investigated. Previous studies focus on centrality metrics like degree centrality (DC), closeness centrality (CC), betweenness centrality (BC) and Eigenvector centrality (EVC) and compare them with maximal clique size however, in this study Katz centrality measure is also considered and shows a pretty robust relation with maximal clique size (MC). Secondly, maximal clique size (MC) algorithm is also revised for network analysis to avoid complexity in computation. Association between MC and five centrality metrics has been evaluated through recognized methods that are Pearson’s correlation coefficient (PCC), Spearman’s correlation coefficient (SCC) and Kendall’s correlation coefficient (KCC). The strong strength of association between them is seen through all three correlation coefficients measure.

Keywords: Centrality measures; network analysis; maximal clique size

Ubaida Fatima and Saman Hina, “Efficient Algorithm for Maximal Clique Size Evaluation” International Journal of Advanced Computer Science and Applications(IJACSA), 10(7), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100761

@article{Fatima2019,
title = {Efficient Algorithm for Maximal Clique Size Evaluation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100761},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100761},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {7},
author = {Ubaida Fatima and Saman Hina}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org