The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100775
PDF

Non-intrusive Driver Drowsiness Detection based on Face and Eye Tracking

Author 1: Ameen Aliu Bamidele
Author 2: Kamilia Kamardin
Author 3: Nur Syazarin Natasha Abd Aziz
Author 4: Suriani Mohd Sam
Author 5: Irfanuddin Shafi Ahmed
Author 6: Azizul Azizan
Author 7: Nurul Aini Bani
Author 8: Hazilah Mad Kaidi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 7, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The rate of annual road accidents attributed to drowsy driving are significantly high. Due to this, researchers have proposed several methods aimed at detecting drivers’ drowsiness. These methods include subjective, physiological, behavioral, vehicle-based, and hybrid methods. However, recent reports on road safety are still indicating drowsy driving as a major cause of road accidents. This is plausible because the current driver drowsiness detection (DDD) solutions are either intrusive or expensive, thus hindering their ubiquitous nature. This research serves to bridge this gap by providing a test-bed for achieving a non-intrusive and low-cost DDD solution. A behavioral DDD solution is proposed based on tracking the face and eye state of the driver. The aim is to make this research an inception to DDD pervasiveness. To achieve this, National Tsing Hua University (NTHU) Computer Vision Lab’s driver drowsiness detection video dataset was utilized. Several video and image processing operations were performed on the videos so as to detect the drivers’ eye state. From the eye states, three important drowsiness features were extracted: percentage of eyelid closure (PERCLOS), blink frequency (BF), and Maximum Closure Duration (MCD) of the eyes. These features were then fed as inputs into several machine learning models for drowsiness classification. Models from the K-nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression, and Artificial Neural Networks (ANN) machine learning algorithms were experimented. These models were evaluated by calculating their accuracy, sensitivity, specificity, miss rate, and false alarm rate values. Although these five metrics were evaluated, the focus was more on getting optimal accuracies and miss rates. The result shows that the best models were a KNN model when k = 31 and an ANN model that used an Adadelta optimizer with 3 hidden layer network of 3, 27, and 9 neurons respective. The KNN model obtained an accuracy of 72.25% with a miss rate of 16.67%, while the ANN model obtained 71.61% and 14.44% accuracy and miss rate respectively.

Keywords: Driver Drowsiness Detection (DDD); face tracking; eye tracking; K-nearest Neighbors (KNN); Support Vector Machine (SVM); Logistic Regression; Artificial Neural Networks (ANN)

Ameen Aliu Bamidele, Kamilia Kamardin, Nur Syazarin Natasha Abd Aziz, Suriani Mohd Sam, Irfanuddin Shafi Ahmed, Azizul Azizan, Nurul Aini Bani and Hazilah Mad Kaidi, “Non-intrusive Driver Drowsiness Detection based on Face and Eye Tracking” International Journal of Advanced Computer Science and Applications(IJACSA), 10(7), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100775

@article{Bamidele2019,
title = {Non-intrusive Driver Drowsiness Detection based on Face and Eye Tracking},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100775},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100775},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {7},
author = {Ameen Aliu Bamidele and Kamilia Kamardin and Nur Syazarin Natasha Abd Aziz and Suriani Mohd Sam and Irfanuddin Shafi Ahmed and Azizul Azizan and Nurul Aini Bani and Hazilah Mad Kaidi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org