The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100778
PDF

New Approach based on Machine Learning for Short-Term Mortality Prediction in Neonatal Intensive Care Unit

Author 1: Zaineb Kefi
Author 2: Kamel Aloui
Author 3: Mohamed Saber Naceur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 7, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Mortality remains one of the most important outcomes to predict in Intensive Care Units (ICUs). In fact, the sooner mortality is predicted, the better critical decisions are made by doctors based on patient’s illness severity. In this paper, a new approach based on Machine Learning (ML) techniques for short-term mortality prediction in Neonatal Intensive Care Unit (NICU) is proposed. This approach relies on many steps. At first, relevant features are selected from available data upon neonates’ admission and from the time-series variables collected within the two first hours of stay in the NICU from the Medical Information Mart for Intensive Care III (MIMIC-III). After that, to predict mortality, many classifiers were tested which are Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Classification and Regression Trees (CART), Logistic Regression (LR), Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF). The experimental results showed that LDA was the best performing classifier with an accuracy equal to 0.947 and AUROC equal to 0.97 with 31 features. The third step of this approach is mortality time prediction using the Galaxy-Random Forest method achieving an f-score equal to 0.871. The proposed approach compared favorably in terms of time, accuracy and AUROC with existing scoring systems and ML techniques. It is the first work predicting neonates mortality based on ML techniques and time-series data after only two hours of admission to the NICU.

Keywords: Mortality prediction; neonates; Intensive Care Units; machine learning

Zaineb Kefi, Kamel Aloui and Mohamed Saber Naceur, “New Approach based on Machine Learning for Short-Term Mortality Prediction in Neonatal Intensive Care Unit” International Journal of Advanced Computer Science and Applications(IJACSA), 10(7), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100778

@article{Kefi2019,
title = {New Approach based on Machine Learning for Short-Term Mortality Prediction in Neonatal Intensive Care Unit},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100778},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100778},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {7},
author = {Zaineb Kefi and Kamel Aloui and Mohamed Saber Naceur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org