The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100813
PDF

Detection of Chronic Kidney Disease using Machine Learning Algorithms with Least Number of Predictors

Author 1: Marwa Almasoud
Author 2: Tomas E Ward

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 8, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Chronic kidney disease (CKD) is one of the most critical health problems due to its increasing prevalence. In this paper, we aim to test the ability of machine learning algorithms for the prediction of chronic kidney disease using the smallest subset of features. Several statistical tests have been done to remove redundant features such as the ANOVA test, the Pearson’s correlation, and the Cramer’s V test. Logistic regression, support vector machines, random forest, and gradient boosting algorithms have been trained and tested using 10-fold cross-validation. We achieve an accuracy of 99.1 according to F1-measure from Gradient Boosting classifier. Also, we found that hemoglobin has higher importance for both random forest and Gradient boosting in detecting CKD. Finally, our results are among the highest compared to previous studies but with less number of features reached so far. Hence, we can detect CKD at only $26.65 by performing three simple tests.

Keywords: Chronic Kidney Disease (CKD); Random Forest (RF); Gradient Boosting (GB); Logistic Regression (LR); Support Vector Machines (SVM); Machine Learning (ML); prediction

Marwa Almasoud and Tomas E Ward, “Detection of Chronic Kidney Disease using Machine Learning Algorithms with Least Number of Predictors” International Journal of Advanced Computer Science and Applications(IJACSA), 10(8), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100813

@article{Almasoud2019,
title = {Detection of Chronic Kidney Disease using Machine Learning Algorithms with Least Number of Predictors},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100813},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100813},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {8},
author = {Marwa Almasoud and Tomas E Ward}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org