The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100935
PDF

An Enhanced Deep Learning Approach in Forecasting Banana Harvest Yields

Author 1: Mariannie A Rebortera
Author 2: Arnel C Fajardo

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 9, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This technical quest aspired to build deep multifaceted system proficient in forecasting banana harvest yields essential for extensive planning for a sustainable production in the agriculture sector. Recently, deep-learning (DL) approach has been used as a new alternative model in forecasting. In this paper, the enhanced DL approach incorporates multiple long short term memory (LSTM) layers employed with multiple neurons in each layer, fully trained and built a state for forecasting. The enhanced model used the banana harvest yield data from agrarian reform beneficiary (ARB) cooperative of Dapco in Davao del Norte, Philippines. The model parameters such as epoch, batch size and neurons underwent tuning to identify its optimal values to be used in the experiments. Additionally, the root-mean-squared error (RMSE) is used to evaluate the performance of the model. Using the same set of training and testing data, experiment exhibits that the enhanced model achieved the optimal result of 34.805 in terms of RMSE. This means that the enhanced model outperforms the single and multiple LSTM layer with 43.5 percent and 44.95 percent reduction in error rates, respectively. Since there is no proof that LSTM recurrent neutral network has been used with the same agricultural problem domain, therefore, there is no standard available with regards to the level of error reduction in the forecast. Moreover, investigating the performance of the model using diverse datasets specifically with multiple input features (multivariate) is suggested for exploration. Furthermore, extending and embedding this approach to a web-based along with a handy application is the future plan for the benefit of the medium scale banana growers of the region for efficient and effective decision making and advance planning.

Keywords: Yield forecasting; Deep Learning; Long short-term memory; Banana harvest yield forecasting

Mariannie A Rebortera and Arnel C Fajardo, “An Enhanced Deep Learning Approach in Forecasting Banana Harvest Yields” International Journal of Advanced Computer Science and Applications(IJACSA), 10(9), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100935

@article{Rebortera2019,
title = {An Enhanced Deep Learning Approach in Forecasting Banana Harvest Yields},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100935},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100935},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {9},
author = {Mariannie A Rebortera and Arnel C Fajardo}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org