The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100943
PDF

Fraud Detection using Machine Learning in e-Commerce

Author 1: Adi Saputra
Author 2: Suharjito

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 9, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The volume of internet users is increasingly causing transactions on e-commerce to increase as well. We observe the quantity of fraud on online transactions is increasing too. Fraud prevention in e-commerce shall be developed using machine learning, this work to analyze the suitable machine learning algorithm, the algorithm to be used is the Decision Tree, Naive Bayes, Random Forest, and Neural Network. Data to be used is still unbalance. Synthetic Minority Over-sampling Technique (SMOTE) process is to be used to create balance data. Result of evaluation using confusion matrix achieve the highest accuracy of the neural network by 96 percent, random forest is 95 percent, Naïve Bayes is 95 percent, and Decision tree is 91 percent. Synthetic Minority Over-sampling Technique (SMOTE) is able to increase the average of F1-Score from 67.9 percent to 94.5 percent and the average of G-Mean from 73.5 percent to 84.6 percent.

Keywords: Machine learning; random forest; Naïve Bayes; SMOTE; neural network; e-commerce; confusion matrix; G-Mean; F1-score; transaction; fraud

Adi Saputra and Suharjito, “Fraud Detection using Machine Learning in e-Commerce” International Journal of Advanced Computer Science and Applications(IJACSA), 10(9), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100943

@article{Saputra2019,
title = {Fraud Detection using Machine Learning in e-Commerce},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100943},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100943},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {9},
author = {Adi Saputra and Suharjito}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org