The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100958
PDF

Deep CNN-based Features for Hand-Drawn Sketch Recognition via Transfer Learning Approach

Author 1: Shaukat Hayat
Author 2: Kun She
Author 3: Muhammad Mateen
Author 4: Yao Yu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 9, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Image-based object recognition is a well-studied topic in the field of computer vision. Features extraction for hand-drawn sketch recognition and retrieval become increasingly popular among the computer vision researchers. Increasing use of touchscreens and portable devices raised the challenge for computer vision community to access the sketches more efficiently and effectively. In this article, a novel deep convolutional neural network-based (DCNN) framework for hand-drawn sketch recognition, which is composed of three well-known pre-trained DCNN architectures in the context of transfer learning with global average pooling (GAP) strategy is proposed. First, an augmented-variants of natural images was generated and sum-up with TU-Berlin sketch images to all its corresponding 250 sketch object categories. Second, the features maps were extracted by three asymmetry DCNN architectures namely, Visual Geometric Group Network (VGGNet), Residual Networks (ResNet) and Inception-v3 from input images. Finally, the distinct features maps were concatenated and the features reductions were carried out under GAP layer. The resulting feature vector was fed into the softmax classifier for sketch classification results. The performance of proposed framework is comprehensively evaluated on augmented-variants TU-Berlin sketch dataset for sketch classification and retrieval task. Experimental outcomes reveal that the proposed framework brings substantial improvements over the state-of-the-art methods for sketch classification and retrieval.

Keywords: Deep convolutional neural network; sketch recognition; transfer learning; global average pooling

Shaukat Hayat, Kun She, Muhammad Mateen and Yao Yu, “Deep CNN-based Features for Hand-Drawn Sketch Recognition via Transfer Learning Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 10(9), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100958

@article{Hayat2019,
title = {Deep CNN-based Features for Hand-Drawn Sketch Recognition via Transfer Learning Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100958},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100958},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {9},
author = {Shaukat Hayat and Kun She and Muhammad Mateen and Yao Yu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org