The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110102
PDF

Search Space of Adversarial Perturbations against Image Filters

Author 1: Dang Duy Thang
Author 2: Toshihiro Matsui

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The superiority of deep learning performance is threatened by safety issues for itself. Recent findings have shown that deep learning systems are very weak to adversarial examples, an attack form that was altered by the attacker’s intent to deceive the deep learning system. There are many proposed defensive methods to protect deep learning systems against adversarial examples. However, there is still lack of principal strategies to deceive those defensive methods. Any time a par-ticular countermeasure is proposed, a new powerful adversarial attack will be invented to deceive that countermeasure. In this study, we focus on investigating the ability to create adversarial patterns in search space against defensive methods that use image filters. Experimental results conducted on the ImageNet dataset with image classification tasks showed the correlation between the search space of adversarial perturbation and filters. These findings open a new direction for building stronger offensive methods towards deep learning systems.

Keywords: Deep neural networks; image filters; adversarial examples; image classification

Dang Duy Thang and Toshihiro Matsui, “Search Space of Adversarial Perturbations against Image Filters” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110102

@article{Thang2020,
title = {Search Space of Adversarial Perturbations against Image Filters},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110102},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110102},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Dang Duy Thang and Toshihiro Matsui}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org