The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110127
PDF

A Critical Review on Adverse Effects of Concept Drift over Machine Learning Classification Models

Author 1: Syed Muslim Jameel
Author 2: Manzoor Ahmed Hashmani
Author 3: Hitham Alhussain
Author 4: Mobashar Rehman
Author 5: Arif Budiman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Big Data (BD) is participating in the current computing revolution in a big way. Industries and organizations are utilizing their insights for Business Intelligence using Machine Learning Models (ML-Models). Deep Learning Models (DL-Models) have been proven to be a better selection than Shallow Learning Models (SL-Models). However, the dynamic characteristics of BD introduce many critical issues for DL-Models, Concept Drift (CD) is one of them. CD issue frequently appears in Online Supervised Learning environments in which data trends change over time. The problem may even worsen in the BD environment due to veracity and variability factors. Due to the CD issue, the accuracy of classification results degrades in ML-Models, which may make ML-Models not applicable. Therefore, ML-Models need to adapt quickly to changes to maintain the accuracy level of the results. In current solutions, a substantial improvement in accuracy and adaptability is needed to make ML-Models robust in a non-stationary environment. In the existing literature, the consolidated information on this issue is not available. Therefore, in this study, we have carried out a systematic critical literature review to discuss the Concept Drift taxonomy and identify the adverse effects and existing approaches to mitigate CD.

Keywords: Big data classification; machine learning; online supervised learning; concept drift; Adaptive Convolutional Neural Network Extreme Learning Machine (ACNNELM); Meta-Cognitive Online Sequential Extreme Learning Machine (MOSELM); Online Sequential Extreme Learning Machine (OSELM); Real Drift (RD); Virtual Drift (VD); Hybrid Drift (HD); Deep Learning (DL); Shallow Learning (SL); Concept Drift (CD)

Syed Muslim Jameel, Manzoor Ahmed Hashmani, Hitham Alhussain, Mobashar Rehman and Arif Budiman, “A Critical Review on Adverse Effects of Concept Drift over Machine Learning Classification Models” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110127

@article{Jameel2020,
title = {A Critical Review on Adverse Effects of Concept Drift over Machine Learning Classification Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110127},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110127},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Syed Muslim Jameel and Manzoor Ahmed Hashmani and Hitham Alhussain and Mobashar Rehman and Arif Budiman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org