The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110133
PDF

Classification Models for Determining Types of Academic Risk and Predicting Dropout in University Students

Author 1: Norka Bedregal-Alpaca
Author 2: Víctor Cornejo-Aparicio
Author 3: Joshua Zárate-Valderrama
Author 4: Pedro Yanque-Churo

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Academic performance is a topic studied not only to identify those students who could drop out of their studies, but also to classify them according to the type of academic risk they could find themselves. An application has been implemented that uses academic information provided by the university and generates classification models from three different algorithms: artificial neural networks, ID3 and C4.5. The models created use a set of variables and criteria for their construction and can be used to classify student desertion and more specifically to predict their type of academic risk. The performance of these models was compared to define the one that provided the best results and that will serve to make the classification of students. Decision tree algorithms, C4.5 and ID3, presented better measurements with respect to the artificial neural network. The tree generated using the C4.5 algorithm presented the best performance metrics with correctness, accuracy, and sensitivity equal to 0.83, 0.87, and 0.90 respectively. As a result of the classification to determine student desertion it was concluded, according to the model generated using the C4.5 algorithm, that the ratio of credits approved by a student to the credits that he should have taken is the variable more significant. The classification, depending on the type of academic risk, generated a tree model indicating that the number of abandoned subjects is the most significant variable. The admission scan modality through which the student entered the university did not turn out to be significant, as it does not appear in the generated decision tree.

Keywords: Educational data mining; ID3 algorithm; C4.5 algorithm; artificial neural network; classification algorithms; student desertion; academic risk

Norka Bedregal-Alpaca, Víctor Cornejo-Aparicio, Joshua Zárate-Valderrama and Pedro Yanque-Churo, “Classification Models for Determining Types of Academic Risk and Predicting Dropout in University Students” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110133

@article{Bedregal-Alpaca2020,
title = {Classification Models for Determining Types of Academic Risk and Predicting Dropout in University Students},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110133},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110133},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Norka Bedregal-Alpaca and Víctor Cornejo-Aparicio and Joshua Zárate-Valderrama and Pedro Yanque-Churo}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org