The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110141
PDF

The Multi-Class Classification for the First Six Surats of the Holy Quran

Author 1: Nouh Sabri Elmitwally
Author 2: Ahmed Alsayat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Holy Quran is one of the holy books revealed to the prophet Muhammad in the form of separate verses. These verses were written on tree leaves, stones, and bones during his life; as such, they were not arranged or grouped into one book until later. There is no intelligent system that is able to distinguish the verses of Quran chapters automatically. Accordingly, in this study we propose a model that can recognize and categorize Quran verses automatically and conclusion the essential features through Quran chapters classification for the first six Surat of the Holy Quran chapters, based on machine learning techniques. The classification of the Quran verses into chapters using machine learning classifiers is considered an intelligent task. Classification algorithms like Naïve Bayes, SVM, KNN, and decision tree J48 help to classify texts into categories or classes. The target of this research is using machine learning algorithms for the text classification of the Holy Quran verses. As the Quran texts consists of 114 chapters, we are only working with the first six chapters. In this paper, we build a multi-class classification model for the chapter names of the Quranic verses using Support Vector Classifier (SVC) and GaussianNB. The results show the best overall accuracy is 80% for the SVC and 60% for the Gaussian Naïve Bayes.

Keywords: Text classification; machine learning; natural language processing; text pre-processing; feature selection; data mining; Holy Quran

Nouh Sabri Elmitwally and Ahmed Alsayat, “The Multi-Class Classification for the First Six Surats of the Holy Quran” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110141

@article{Elmitwally2020,
title = {The Multi-Class Classification for the First Six Surats of the Holy Quran},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110141},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110141},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Nouh Sabri Elmitwally and Ahmed Alsayat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org