The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110150
PDF

An Artificial Deep Neural Network for the Binary Classification of Network Traffic

Author 1: Shubair A. Abdullah
Author 2: Ahmed Al-Ashoor

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Classifying network packets is crucial in intrusion detection. As intrusion detection systems are the primary defense of the infrastructure of networks, they need to adapt to the exponential increase in threats. Despite the fact that many machine learning techniques have been devised by researchers, this research area is still far from finding perfect systems with high malicious packet detection accuracy. Deep learning is a subset of machine learning and aims to mimic the workings of the human brain in processing data for use in decision-making. It has already shown excellent capabilities in dealing with many real-world problems such as facial recognition and intelligent transportation systems. This paper develops an artificial deep neural network to detect malicious packets in network traffic. The artificial deep neural network is built carefully and gradually to confirm the optimum number of input and output neurons and the learning mechanism inside hidden layers. The performance is analyzed by carrying out several experiments on real-world open source traffic datasets using well-known classification metrics. The experiments have shown promising results for real-world application in the binary classification of network traffic.

Keywords: Deep learning; ANN; packet classification; binary classification; malicious traffic classification

Shubair A. Abdullah and Ahmed Al-Ashoor, “An Artificial Deep Neural Network for the Binary Classification of Network Traffic” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110150

@article{Abdullah2020,
title = {An Artificial Deep Neural Network for the Binary Classification of Network Traffic},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110150},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110150},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Shubair A. Abdullah and Ahmed Al-Ashoor}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org