Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.
Abstract: To the modern Search Engines (SEs), one of the biggest threats to be considered is spamdexing. Nowadays spammers are using a wide range of techniques for content generation, they are using content spam to fill the Search Engine Result Pages (SERPs) with low-quality web pages. Generally, spam web pages are insufficient, irrelevant and improper results for users. Many researchers from academia and industry are working on spamdexing to identify the spam web pages. However, so far not even a single universally efficient method is developed for identification of all spam web pages. We believe that for tackling the content spam there must be improved methods. This article is an attempt in that direction, where a framework has been proposed for spam web pages identification. The framework uses Stop words, Keywords Density, Spam Keywords Database, Part of Speech (POS) ratio, and Copied Content algorithms. For conducting the experiments and obtaining threshold values WEBSPAM-UK2006 and WEBSPAM-UK2007 datasets have been used. An excellent and promising F-measure of 77.38% illustrates the effectiveness and applicability of proposed method.
Asim Shahzad, Hairulnizam Mahdin and Nazri Mohd Nawi, “An Improved Framework for Content-based Spamdexing Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110151
@article{Shahzad2020,
title = {An Improved Framework for Content-based Spamdexing Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110151},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110151},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Asim Shahzad and Hairulnizam Mahdin and Nazri Mohd Nawi}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.