The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110154
PDF

EEG Emotion Signal of Artificial Neural Network by using Capsule Network

Author 1: Usman Ali
Author 2: Haifang Li
Author 3: Rong Yao
Author 4: Qianshan Wang
Author 5: Waqar Hussain
Author 6: Syed Badar ud Duja
Author 7: Muhammad Amjad
Author 8: Bilal Ahmed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human emotion recognition through electroencephalographic (EEG) signals is becoming attractive. Several evolutions used for our research mechanism technology to describe two different primaries: one used for combining the vital attribute, frequency sphere, and physical element of the EEG signals, and the architecture describes the two-dimensional image. Emotion realization is imposing effort in the computer brain interface field, which is mostly used to understand the field of education, medical military, and many others. The allocation issue arises in the required area of emotion recognition. In this paper, the allocation structure based on Caps Net neural network is described. The heder factor shows that the best point to classified the original EEG signals scarce group to using many of the algorithms like Lasso for a better function to used and other than occupy the heights.Furthermore, essential features like tiny subset take by input for the computer network attain for many ultimate emotional classifications. Many of the results show to alternate the best parameters model use and other network formats to making the Caps Net and another neural network act as the emotional valuation on EEG signals. It attains almost 80.22% and 85.41% average allocation efficiency under demeanor and view of the emotion pathway as compared to the Support Vector Machine (SVM) and convolutional neural network(CNN or ConvNet). A significant allocation edge attains the best conclusion and automatically enhances the performance of the EEG emotional classification. Deep learning access, such as CNN has widely used to improve primary allocation performance of motor symbolism-based brain-computer interfaces (BCI). As we know that CNN's limited allocation achievement degraded when an essential point data is distorted. Basically, in the electroencephalography (EEG) case, the signals consist of the same user are not measure. So we implement the Capsule networks (CapsNet), which is essential to extract many features. By that, it attains a much more powerful and positive performance than the old CNN approaches.

Keywords: Emotion recognition; caps net; EEG signal; multidimensional feature; hybrid neural networks; CNN; Granger; motor imagery classification; deep learning

Usman Ali, Haifang Li, Rong Yao, Qianshan Wang, Waqar Hussain, Syed Badar ud Duja, Muhammad Amjad and Bilal Ahmed, “EEG Emotion Signal of Artificial Neural Network by using Capsule Network” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110154

@article{Ali2020,
title = {EEG Emotion Signal of Artificial Neural Network by using Capsule Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110154},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110154},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Usman Ali and Haifang Li and Rong Yao and Qianshan Wang and Waqar Hussain and Syed Badar ud Duja and Muhammad Amjad and Bilal Ahmed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org