The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110174
PDF

An Improved Deep Learning Approach based on Variant Two-State Gated Recurrent Unit and Word Embeddings for Sentiment Classification

Author 1: Muhammad Zulqarnain
Author 2: Suhaimi Abd Ishak
Author 3: Rozaida Ghazali
Author 4: Nazri Mohd Nawi
Author 5: Muhammad Aamir
Author 6: Yana Mazwin Mohmad Hassim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sentiment classification is an important but challenging task in natural language processing (NLP) and has been widely used for determining the sentiment polarity from user opinions. And word embedding technique learned from a various contexts to produce same vector representations for words with same contexts and also has been extensively used for NLP tasks. Recurrent neural networks (RNNs) are common deep learning architecture that are extensively used mechanism to address the classification issue of variable-length sentences. In this paper, we analyze to investigate variant-Gated Recurrent Unit (GRU) that includes encoder method to preprocess data and improve the impact of word embedding for sentiment classification. The real contributions of this paper contain the proposal of a novel Two-State GRU, and encoder method to develop an efficient architecture namely (E-TGRU) for sentiment classification. The empirical results demonstrated that GRU model can efficiently acquire the words employment in contexts of user’s opinions provided large training data. We evaluated the performance with traditional recurrent models, GRU, LSTM and Bi-LSTM two benchmark datasets, IMDB and Amazon Products Reviews respectively. Results present that: 1) proposed approach (E-TGRU) obtained higher accuracy than three state-of-the-art recurrent approaches; 2) Word2Vec is more effective in handling as word vector in sentiment classification; 3) implementing the network, an imitation strategy shows that our proposed approach is strong for text classification.

Keywords: RNN; GRU; LSTM; encoder; Two-state GRU; Long-term dependencies; Sentence Classification

Muhammad Zulqarnain, Suhaimi Abd Ishak, Rozaida Ghazali, Nazri Mohd Nawi, Muhammad Aamir and Yana Mazwin Mohmad Hassim, “An Improved Deep Learning Approach based on Variant Two-State Gated Recurrent Unit and Word Embeddings for Sentiment Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110174

@article{Zulqarnain2020,
title = {An Improved Deep Learning Approach based on Variant Two-State Gated Recurrent Unit and Word Embeddings for Sentiment Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110174},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110174},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Muhammad Zulqarnain and Suhaimi Abd Ishak and Rozaida Ghazali and Nazri Mohd Nawi and Muhammad Aamir and Yana Mazwin Mohmad Hassim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org