The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110178
PDF

HarmonyMoves: A Unified Prediction Approach for Moving Object Future Path

Author 1: Mohammed Abdalla
Author 2: Hoda M. O. Mokhtar
Author 3: Neveen ElGamal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Trajectory prediction plays a critical role on many location-based services such as proximity-based marketing, routing services, and traffic management. The vast majority of existing trajectory prediction techniques utilize the object’s motion history to predict the future path(s). In addition to, their assumptions that the objects’ moving with recognized patterns or know their routes. However, these techniques fail when the history is unavailable. Also, these techniques fail to predict the path when the query moving objects lost their ways or moving with abnormal patterns. This paper introduces a system named HarmonyMoves to predict the future paths of moving objects on road networks without relying on their past trajectories. The system checks the harmony between the query object and other moving objects, after that if the harmony exists, this means that there are other objects in space moving like the query object. Then, a Markov Model is adopted to analyze this set of similar motion patterns and generate the next potential road segments of the object with their probabilities. If the harmony does not exist, HarmonyMoves considers this query object as abnormal object (object lost the way and needs support to return back known routes), for this purpose HarmonyMoves employed a new module to handle this case. A fundamental aspect of HarmonyMoves lies in achieving a high accurate prediction while performing efficiently to return query answers.

Keywords: Trajectory prediction; machine learning; moving objects

Mohammed Abdalla, Hoda M. O. Mokhtar and Neveen ElGamal, “HarmonyMoves: A Unified Prediction Approach for Moving Object Future Path” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110178

@article{Abdalla2020,
title = {HarmonyMoves: A Unified Prediction Approach for Moving Object Future Path},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110178},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110178},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Mohammed Abdalla and Hoda M. O. Mokhtar and Neveen ElGamal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org