The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110180
PDF

Developing Decision Tree based Models in Combination with Filter Feature Selection Methods for Direct Marketing

Author 1: Ruba Obiedat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 1, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Direct Marketing is a form of advertising strategies which aims to communicate directly with the most potential customers for a certain product using the most appropriate communication channel. Banks are spending a huge amount of money on their marketing campaigns, so they are increasingly interested in this topic in order to maximize the efficiency of their campaigns, especially with the existence of high competition in the market. All marketing campaigns are highly dependent on the huge amount of available data about customers. Thus special Data Mining techniques are needed in order to analyze these data, predict campaigns efficiency and give decision makers indications regarding the main marketing features affecting the marketing success. This paper focuses on four popular and common Decision Tree (DT) algorithms: SimpleCart, C4.5, RepTree and Random Tree. DT is chosen because the generated models are in the form of IF-THEN rules which are easy to understand by decision makers with poor technical background in banks and other financial institutions. Data was taken from a Portuguese bank direct marketing campaign. A filter-based Feature selection is applied in the study to improve the performance of the classification. Results show that SimpleCart has the best results in predicting the campaigns success. Another interesting finding that the five most significant features influencing the direct marketing campaign success to be focused on by decision makers are: Call duration, offered interest rate, number of employees making the contacts, customer confidence and changes in the prices levels.

Keywords: Direct marketing; data mining; decision tree; simpleCart; C4.5; reptree; random tree; weka; confusion matrix; class-imbalance

Ruba Obiedat, “Developing Decision Tree based Models in Combination with Filter Feature Selection Methods for Direct Marketing” International Journal of Advanced Computer Science and Applications(IJACSA), 11(1), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110180

@article{Obiedat2020,
title = {Developing Decision Tree based Models in Combination with Filter Feature Selection Methods for Direct Marketing},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110180},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110180},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {1},
author = {Ruba Obiedat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org