The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111002
PDF

Alzheimer’s Disease Detection using Neighborhood Components Analysis and Feature Selection

Author 1: Mohamed Maher Ben Ismail
Author 2: Reema Alabdullatif
Author 3: Ouiem Bchir

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we propose a Computer Aided Diagnosis (CAD) system in order to assist the physicians in the early detection of Alzheimer’s Disease (AD) and ensure an effective diagnosis. The proposed framework is designed to be fully-automated upon the capture of the brain structure using Magnetic Resonance Imaging (MRI) scanners. The Voxel-Based Morphometry (VBM) analysis is a key element in the proposed detection process as it is intended to investigate the Gray Matter (GM) tissues in the captured MRI images. In other words, the feature extraction phase consists in encoding the voxel properties in the MRI images into numerical vectors. The resulting feature vectors are then fed into a Neighborhood Component Analysis and Feature Selection (NCFS) algorithm coupled with K-Nearest Neighbor (KNN) algorithm in order to learn a classification model able to recognize AD cases. The feature selection based on NCFS algorithm improved the overall classification performance.

Keywords: Alzheimer detection; classification; feature selection

Mohamed Maher Ben Ismail, Reema Alabdullatif and Ouiem Bchir, “Alzheimer’s Disease Detection using Neighborhood Components Analysis and Feature Selection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111002

@article{Ismail2020,
title = {Alzheimer’s Disease Detection using Neighborhood Components Analysis and Feature Selection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111002},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111002},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Mohamed Maher Ben Ismail and Reema Alabdullatif and Ouiem Bchir}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org