The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111003
PDF

Support Kernel Classification: A New Kernel-Based Approach

Author 1: Ouiem Bchir
Author 2: Mohamed M. Ben Ismail
Author 3: Sara Algarni

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we introduce a new classification approach that learns class dependent Gaussian kernels and the belongingness likelihood of the data points with respect to each class. The proposed Support Kernel Classification (SKC) is designed to characterize and discriminate between the data instances from the different classes. It relies on the maximization of the intra-class distances and the minimization of the intra-class distances to learn the optimal Gaussian parameters. In fact, a novel objective function is proposed to model each class using one Gaussian function. The experiments conducted using synthetic datasets demonstrated the effectiveness of the proposed algorithm. Moreover, the results obtained using real datasets proved that the proposed classifier outperforms the relevant state of the art approaches.

Keywords: Supervised learning; classification; kernel based learning

Ouiem Bchir, Mohamed M. Ben Ismail and Sara Algarni, “Support Kernel Classification: A New Kernel-Based Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111003

@article{Bchir2020,
title = {Support Kernel Classification: A New Kernel-Based Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111003},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111003},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Ouiem Bchir and Mohamed M. Ben Ismail and Sara Algarni}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org