The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Continuous Human Activity Recognition in Logistics from Inertial Sensor Data using Temporal Convolutions in CNN

Author 1: Abbas Shah Syed
Author 2: Zafi Sherhan Syed
Author 3: Areez Khalil Memon

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0111074

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human activity recognition has been an important task for the research community. With the introduction of deep learning architectures, the performance of activity recognition algorithms has improved significantly. However, most of the research in this area has focused on activity recognition for health/assisted living with other applications being given less attention. This paper considers continuous activity recognition in logistics (order picking and packing operations) using a convolutional neural network with temporal convolutions on inertial measurement sensor data from the recently released LARa dataset. Four variants of the popular CNN-IMU are experimented upon and a discussion of the results is provided. The results indicate that temporal convolutions are able to achieve satisfactory performance for some activities (hand center and cart) whereas they perform poorly for the activities of stand and hand up.

Keywords: Convolutional Neural Networks; deep learning; Human Activity Recognition (HAR); inertial sensors; LARa dataset

Abbas Shah Syed, Zafi Sherhan Syed and Areez Khalil Memon, “Continuous Human Activity Recognition in Logistics from Inertial Sensor Data using Temporal Convolutions in CNN” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111074

@article{Syed2020,
title = {Continuous Human Activity Recognition in Logistics from Inertial Sensor Data using Temporal Convolutions in CNN},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111074},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111074},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Abbas Shah Syed and Zafi Sherhan Syed and Areez Khalil Memon}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org