The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111080
PDF

Classification of Common and Uncommon Tones by P300 Feature Extraction and Identification of Accurate P300 Wave by Machine Learning Algorithms

Author 1: Rafia Akhter
Author 2: Kehinde Lawal
Author 3: Md. Tanvir Rahman
Author 4: Shamim Ahmed Mazumder

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An event-related potential (ERP) is a measure of brain response to a specific sensory, cognitive, or motor event. One common ERP technique used in cognition research is the oddball paradigm where the brain’s response to common and uncommon stimuli is compared. The neurologic response to the oddball paradigm produces a P300 ERP which is one of the major visual/auditory sensory ERP components. The purpose of this study to classify ERP responses to common and uncommon tones by extracting the P300 feature from ERP epochs and identify the accurate shape of the P300 wave. For recording ERP data, and OpenBCI system is used. P300 features are extracted using EEGlab which is a mathematical tool of MATLAB. Finally, various types of machine learning models are used for identifying the accurate shape of a P300 wave and then classifying common and uncommon auditory tones. For stimuli classification, all of the algorithms evaluated performed efficiently and built a consistent model with 93.75% to 99.1% evaluation accuracy. Also, for P300 shape detection, NN model showed the best performance with 94.95% accuracy. These findings have the potential to add useful machine learning-based methods to the clinical application of ERPs.

Keywords: Event Related Potential (ERP); classification; P300; machine-learning; oddball-paradigm

Rafia Akhter, Kehinde Lawal, Md. Tanvir Rahman and Shamim Ahmed Mazumder, “Classification of Common and Uncommon Tones by P300 Feature Extraction and Identification of Accurate P300 Wave by Machine Learning Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111080

@article{Akhter2020,
title = {Classification of Common and Uncommon Tones by P300 Feature Extraction and Identification of Accurate P300 Wave by Machine Learning Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111080},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111080},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Rafia Akhter and Kehinde Lawal and Md. Tanvir Rahman and Shamim Ahmed Mazumder}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org