The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111112
PDF

Single Modality-Based Event Detection Framework for Complex Videos

Author 1: Sheeraz Arif
Author 2: Adnan Ahmed Siddiqui
Author 3: Rajesh Kumar
Author 4: Avinash Maheshwari
Author 5: Komal Maheshwari
Author 6: Muhammad Imran Saeed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Event detection of rare and complex events in large video datasets or in unconstrained user-uploaded videos on internet is a challenging task. The presence of irregular camera movement, viewpoint changes, illumination variations and significant changes in the background make extremely difficult to capture underlying motion in videos. In addition, extraction of features using different modalities (single streams) may offer computational complexities and cause abstraction of confusing and irrelevant spatial and semantic features. To address this problem, we present a single stream (RGB only) based on feature of spatial and semantic features extracted by modified 3D Residual Convulsion Network. We combine the spatial and semantic features based on this assumption that difference between both types of features can discover the accurate and relevant features. Moreover, introduction of temporal encoding builds the relationship in consecutive video frames to explore discriminative long-term motion patterns. We conduct extensive experiments on prominent publically available datasets. The obtained results demonstrate the great power of our proposed model and improved accuracy compared with existing state-of-the-art methods.

Keywords: Event detection; single-stream; feature fusion; temporal encoding

Sheeraz Arif, Adnan Ahmed Siddiqui, Rajesh Kumar, Avinash Maheshwari, Komal Maheshwari and Muhammad Imran Saeed, “Single Modality-Based Event Detection Framework for Complex Videos” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111112

@article{Arif2020,
title = {Single Modality-Based Event Detection Framework for Complex Videos},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111112},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111112},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Sheeraz Arif and Adnan Ahmed Siddiqui and Rajesh Kumar and Avinash Maheshwari and Komal Maheshwari and Muhammad Imran Saeed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org