The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111149
PDF

Liver Tumor Segmentation using Superpixel based Fast Fuzzy C Means Clustering

Author 1: Munipraveena Rela
Author 2: Suryakari Nagaraja Rao
Author 3: Patil Ramana Reddy

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In computer aided diagnosis of liver tumor detection, tumor segmentation from the CT image is an important step. The majority of methods are not able to give an integrated structure for finding fast and effective tumor segmentation. Hence segmentation of tumor is most difficult task in diagnosing. In this paper, CT abdominal image is segmented using Superpixel-based fast Fuzzy C Means clustering algorithm to decrease the time needed for computation and eradicate the manual interface. In this algorithm, a superpixel image with perfect contour can be obtain using a Multiscale morphological gradient reconstruction operation. Superpixel is pre-segmentation algorithm and is employed to obtain segmentation accuracy. FCM with modified object is used to obtain the color segmentation. This method is examined on 20 CT images gathered from liveratlas database, results shows that this approach is fast and accurate compared to most of segmentation algorithms. Statistical parameters which include accuracy, precision, sensitivity, specificity, dice, rfn and rfp are calculated for segmented image. The results shows that this algorithm gives high accuracy of 99.58% and improved rfn value of 8.34% compared with methods discussed in the literature.

Keywords: CT scan image; image segmentation; fuzzy c mean clustering; liver mask; superpixel image

Munipraveena Rela, Suryakari Nagaraja Rao and Patil Ramana Reddy, “Liver Tumor Segmentation using Superpixel based Fast Fuzzy C Means Clustering” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111149

@article{Rela2020,
title = {Liver Tumor Segmentation using Superpixel based Fast Fuzzy C Means Clustering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111149},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111149},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Munipraveena Rela and Suryakari Nagaraja Rao and Patil Ramana Reddy}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org