The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111150
PDF

RHEM: A Robust Hybrid Ensemble Model for Students’ Performance Assessment on Cloud Computing Course

Author 1: Sapiah Sakri
Author 2: Ala Saleh Alluhaidan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Creating tools, such as a prediction model to assist students in a traditional or virtual setting, is an essential activity in today's educational climate. The early stage towards incorporating these predictive models using techniques of machine learning focused on predicting the achievement of students in terms of the grades obtained. The research aim is to propose a robust hybrid ensemble model (RHEM) that can warn at-risks students (on Cloud Computing course) of their likely outcomes at the early semester assessment. We hybridised four renowned single algorithms – Naïve Bayes, Multilayer Perceptron, k-Nearest Neighbours, and Decision Table – with four well-established ensemble algorithms – Bagging, RandomSubSpace, MultiClassClassifier, and Rotation Forest – which produced 16 new hybrid ensemble classifier models. Hence, we have thoroughly and rigorously built, trained, and tested 24 models all together. The experiment concluded that the Rotation Forest + MultiLayer Perceptron model was the best performing model based on the model evaluation in terms of Accuracy (91.70%), Precision (86.1%), F-Score rate (87.3%), and Receiver Operating Characteristics Area detection (98.6%). Our research will help students identify their likely final grades in terms of whether they are excellent, very good, good, pass, or fail, and, thus, transform their academic conduct to achieve higher grades in the final exam accordingly.

Keywords: Academic performance; classification algorithms; cloud computing course; ensemble algorithms; hybrid ensemble classifier model; student academic performance tracking

Sapiah Sakri and Ala Saleh Alluhaidan, “RHEM: A Robust Hybrid Ensemble Model for Students’ Performance Assessment on Cloud Computing Course” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111150

@article{Sakri2020,
title = {RHEM: A Robust Hybrid Ensemble Model for Students’ Performance Assessment on Cloud Computing Course},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111150},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111150},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Sapiah Sakri and Ala Saleh Alluhaidan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org