The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111170
PDF

Proficiency Assessment of Machine Learning Classifiers: An Implementation for the Prognosis of Breast Tumor and Heart Disease Classification

Author 1: Talha Ahmed Khan
Author 2: Kushsairy A. Kadir
Author 3: Shahzad Nasim
Author 4: Muhammad Alam
Author 5: Zeeshan Shahid
Author 6: M.S Mazliham

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer and heart disease can be acknowledged as very dangerous and common disease in many countries including Pakistan. In this paper classifiers comparative study has been performed for the tumor and heart disease classification. Around one lac women are diagnosed annually with this life-threatening disease having no family history of the disease. If it is not treated on time it may grow and spread to the other parts of human body. Mammograms are the X-rays of the breast which can be used for the screening of cancer tumor. Prior identification of breast cancer may increase the chance of survival up to 70 percent. Tumors which causes cancer can be categorized into two types: a) Benign and b) Malignant. Benign tumor can be explained as the tumor which are not attached to neighbor tissues or spread in the other parts of the body. In Malignant tumor, other parts may be affected by it as it can grow and spread in the other parts of the body. To classify the tumor as Malignant or Benign is very complex as the similarities of cancer tumor and tumor caused by the skin inflammation are almost same. The early identification of Malignant is mandatory to protect the patient life. Diversified medical methods based on deep learning and machine learning have been developed to treat the patients as cancer is a very serious and crucial issue in this era. In this research paper machine learning algorithms like logistic regression, K-NN and tree have been applied to the breast cancer data set which has been taken from UCI Machine learning repository. Comparative study of classifiers has been performed to determine the better classifier for the robust prediction of breast tumors. Simulated results proved that using Logistic regression, ninety-one percent accuracy was achieved. The research showed that logistic regression can be applied for the accurate and precise early prediction of breast cancer. Cardiovascular disease is very common throughout the world. It has been noticed that health in cardiac patients that there are so many factors which causes heart disease or heart attack. The factors leading to the heart failure includes varying blood pressure, high sugar, cardiac pain, and heart rate, high cholesterol level (LDL), artery blockage and irregular ECG signals. Many researchers proved that stress in patients can also be the reason for the heart disease. Higher numbers of cardiac surgeries like angioplasty and heart by-pass are performed on annual basis. Actually, people don’t care about their lifestyle and diet and fully ignore the symbols. It can be early predicted and cured if proper testing and medication for heart is done. Sometimes there is a false pain which has the same feeling like angina pain depicting cardiovascular disease. To reduce the false alarm and robustly classify the heart disease, several machine learning approaches have been adopted. In proposed research for the accurate classification of heart disease comparison has been performed among support vector machine (SVM), K-nearest neighbors K-NN and linear discriminant analysis. Simulated results demonstrated that Support vector machine was found to be a better classifier having an accuracy of 80.4%.

Keywords: Breast cancer; benign; malignant; logistic regression; cardiovascular disease; heart disease diagnosis; support vector machine; classifiers; k-nearest neighbors

Talha Ahmed Khan, Kushsairy A. Kadir, Shahzad Nasim, Muhammad Alam, Zeeshan Shahid and M.S Mazliham, “Proficiency Assessment of Machine Learning Classifiers: An Implementation for the Prognosis of Breast Tumor and Heart Disease Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111170

@article{Khan2020,
title = {Proficiency Assessment of Machine Learning Classifiers: An Implementation for the Prognosis of Breast Tumor and Heart Disease Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111170},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111170},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Talha Ahmed Khan and Kushsairy A. Kadir and Shahzad Nasim and Muhammad Alam and Zeeshan Shahid and M.S Mazliham}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org