The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111172
PDF

Improved PSO Performance using LSTM based Inertia Weight Estimation

Author 1: Y. V.R.Naga Pawan
Author 2: Kolla Bhanu Prakash

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Particle Swarm Optimization (PSO) is first introduced in the year 1995. It is mostly an applied population-based meta-heuristic optimization algorithm. PSO is diversely used in the areas of sciences, engineering, technology, medicine, and humanities. Particle Swarm Optimization (PSO) is improved its performance by tuning the inertia weight, topology, velocity clamping. Researchers proposed different Inertia Weight based PSO (IWPSO). Every Inertia Weight based PSO in excelling the existing PSOs. A Long Short Term Memory (LSTM) predicting inertia weight based PSO (LSTMIWPSO) is proposed and its performance is compared with constant, random, and linearly decreasing Inertia Weight PSO. Tests are conducted on swarm sizes 50, 75, and 100 with dimensions 10, 15, and 25. The experimental results show that LSTM based IWPSO supersedes the CIWPSO, RIWPSO, and LDIWPSO.

Keywords: Particle swarm optimization; inertia weight; long short term memory; benchmark functions; convergence

Y. V.R.Naga Pawan and Kolla Bhanu Prakash, “Improved PSO Performance using LSTM based Inertia Weight Estimation” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111172

@article{Pawan2020,
title = {Improved PSO Performance using LSTM based Inertia Weight Estimation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111172},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111172},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Y. V.R.Naga Pawan and Kolla Bhanu Prakash}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org