The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111186
PDF

Clustering-Based Hybrid Approach for Multivariate Missing Data Imputation

Author 1: Aditya Dubey
Author 2: Akhtar Rasool

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 11, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the era of big data, a significant amount of data is produced in many applications areas. However due to various reasons including sensor failures, communication failures, environmental disruptions, and human errors, missing values are found frequently These missing data in the observed data make a challenge for other data mining approaches, requiring the missed data to be handled at the preprocessing stage of data mining. Several approaches for handling the missing data have been proposed in the past. These approaches consider the whole dataset for making a prediction, making the whole imputation approach to be cumbersome. This paper proposes the procedure which makes use of the local similarity structure of the dataset for making an Imputation. The K-means clustering technique along with the weighted KNN makes efficient imputation of the missed value. The results are compared against imputations by mean substitution and Fuzzy C Means (FCM). The proposed imputation technique shows that it performs better than other imputation procedures.

Keywords: Clustering; imputation; KNN; missing at random; multivariate

Aditya Dubey and Akhtar Rasool, “Clustering-Based Hybrid Approach for Multivariate Missing Data Imputation” International Journal of Advanced Computer Science and Applications(IJACSA), 11(11), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111186

@article{Dubey2020,
title = {Clustering-Based Hybrid Approach for Multivariate Missing Data Imputation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111186},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111186},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {11},
author = {Aditya Dubey and Akhtar Rasool}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org