The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Predictive System of Semiconductor Failures based on Machine Learning Approach

Author 1: Yousef El Mourabit
Author 2: Youssef El Habouz
Author 3: Hicham Zougagh
Author 4: Younes Wadiai

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0111225

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Maintenance in manufacturing has been developed and researched in the last few decades at a very rapid rate. It’s a major step in process control to build a decision tool that detects defects in equipment or processes as quickly as possible to maintain high process efficiencies. However, the high complexity of machines, and the increase in data available in almost all areas, makes research on improving the accuracy of fault detection via data-mining more and more challenging issue in this field. In our paper we present a new predictive model of semiconductor failures, based on machine learning approach, for predictive maintenance in industry 4.0. The framework of our model includes: Dataset and data acquisition, data preprocessing in three phases (over-sampling, data cleaning, and attribute reduction with principal component analysis (PCA) technique and CfsSubsetEval technique), data modeling, evaluation model and implementation model. We used SECOM dataset to develop four different models based on four algorithms (Naive Bayesian, C4.5 Decision tree, Multilayer perceptron (MLP), Support vector machine), according to the five metrics (True Positive rate, False Positive rate, Precision, F-Mesure and Accuracy). We implemented our new predictive model with 91, 95% of accuracy, as a new efficient predictive model of semiconductor failures.

Keywords: Machine learning; semiconductor; predictive maintenance; industry 4.0

Yousef El Mourabit, Youssef El Habouz, Hicham Zougagh and Younes Wadiai, “Predictive System of Semiconductor Failures based on Machine Learning Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111225

@article{Mourabit2020,
title = {Predictive System of Semiconductor Failures based on Machine Learning Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111225},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111225},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {Yousef El Mourabit and Youssef El Habouz and Hicham Zougagh and Younes Wadiai}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-39 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Your Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • FAQ's
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org