The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111225
PDF

Predictive System of Semiconductor Failures based on Machine Learning Approach

Author 1: Yousef El Mourabit
Author 2: Youssef El Habouz
Author 3: Hicham Zougagh
Author 4: Younes Wadiai

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Maintenance in manufacturing has been developed and researched in the last few decades at a very rapid rate. It’s a major step in process control to build a decision tool that detects defects in equipment or processes as quickly as possible to maintain high process efficiencies. However, the high complexity of machines, and the increase in data available in almost all areas, makes research on improving the accuracy of fault detection via data-mining more and more challenging issue in this field. In our paper we present a new predictive model of semiconductor failures, based on machine learning approach, for predictive maintenance in industry 4.0. The framework of our model includes: Dataset and data acquisition, data preprocessing in three phases (over-sampling, data cleaning, and attribute reduction with principal component analysis (PCA) technique and CfsSubsetEval technique), data modeling, evaluation model and implementation model. We used SECOM dataset to develop four different models based on four algorithms (Naive Bayesian, C4.5 Decision tree, Multilayer perceptron (MLP), Support vector machine), according to the five metrics (True Positive rate, False Positive rate, Precision, F-Mesure and Accuracy). We implemented our new predictive model with 91, 95% of accuracy, as a new efficient predictive model of semiconductor failures.

Keywords: Machine learning; semiconductor; predictive maintenance; industry 4.0

Yousef El Mourabit, Youssef El Habouz, Hicham Zougagh and Younes Wadiai, “Predictive System of Semiconductor Failures based on Machine Learning Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111225

@article{Mourabit2020,
title = {Predictive System of Semiconductor Failures based on Machine Learning Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111225},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111225},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {Yousef El Mourabit and Youssef El Habouz and Hicham Zougagh and Younes Wadiai}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org