The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111273
PDF

Facebook Profile Credibility Detection using Machine and Deep Learning Techniques based on User’s Sentiment Response on Status Message

Author 1: Esraa A. Afify
Author 2: Ahmed Sharaf Eldin
Author 3: Ayman E. Khedr

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, the impact of online Social Networks sites (SNS) has dramatically changed, and fake accounts became a vital issue that has rapidly evolved. This issue gives rise to how to assess and measure the credibility of User-Generated Content (UGC). This content is used in finding trusted sources of information on SNS like Facebook, Twitter, etc. Consequently, classifying users’ profiles and analyzing each user’s behavior response based on the content generated became a challenge that must be solved. One of the most significant approaches is Sentiment Analysis (SA) which plays a major role in assessing and detecting the credibility degree of each user account behavior. In this paper, the aim of the study is to measure and predict the user’s profile credibility by declaring the correlation degree among the UGC features that affect users’ responses to status messages. The proposed models were implemented using six Supervised Machine Learning classifiers, an Unsupervised Machine Learning cluster model, and a Deep Learning Neural Network (NN) model. The research paper presents two experiments to evaluate Facebook profile credibility. At first, we applied a binary classification model to classify profiles into fake or genuine users. Then, we conducted a classification model on genuine users based on the credibility theory by using the Analytical Hierarchical Process (AHP) approach and computed the credibility score for each. Secondly, we selected and analyzed a public Facebook page (CNN public page) and obtained data from it for users’ sentiment reactions and responses on statuses Messages relating to different topics on the period (2016/2017). Then, we performed LDA on the status corpus (Topic Modeling algorithm, Latent Dirichlet Allocation) to generate topic vectors. In addition, we performed Principal Component Analysis (PCA) method to visualize and classify each status topic distribution. Afterthought, we produced a status corpus cluster to classify users’ behaviors through statuses posted and users’ comments. As a conclusion of this study, the first experimental results achieved 95% and 99% accuracy to classify fake/genuine users and incredible/credible accounts, respectively. The second experiment outcome identified the clusters for the status corpus in 10 topic-features distribution and classified users’ contents into credible or not according to the final calculated credibility score.

Keywords: Fake profiles detection; credible profiles detection; sentiment analysis; supervised machine learning classifiers; unsupervised machine learning; binary classification; deep learning neural network; evaluation metrics

Esraa A. Afify, Ahmed Sharaf Eldin and Ayman E. Khedr, “Facebook Profile Credibility Detection using Machine and Deep Learning Techniques based on User’s Sentiment Response on Status Message” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111273

@article{Afify2020,
title = {Facebook Profile Credibility Detection using Machine and Deep Learning Techniques based on User’s Sentiment Response on Status Message},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111273},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111273},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {Esraa A. Afify and Ahmed Sharaf Eldin and Ayman E. Khedr}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org