The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111276
PDF

Medical Data Classification using Fuzzy Min Max Neural Network Preceded by Feature Selection through Moth Flame Optimization

Author 1: Ashish Kumar Dehariya
Author 2: Pragya Shukla

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Prediction of the diseases are possible using medical diagnosis system. This type of health care model can be developed using soft computing techniques. Hybrid approaches of data classification and optimization algorithm increases data classification accuracy. This research proposed applications of Moth Flame optimization (MFO) and Fuzzy Min Max Neural Network (FMMNN) for the development of medical data classification system. Here MFO algorithm considers bulk of features from the disease dataset and produces optimized set of features based on fitness function. MFO is able to avoid local minima problem and this is the main cause behind production of optimal set of features. Optimized features are then passed to FMMNN for classification of malignant and benign cases. As classification is concerned, model experiment achieved 97.74% accuracy for Liver Disorders and 86.95 % accuracy for Pima Indian Diabetes dataset. Improving the medical data classification accuracy is directly related to attain good human health.

Keywords: Moth flame optimization; nature inspired optimization; feature selection; fitness function; fuzzy min-max neural network

Ashish Kumar Dehariya and Pragya Shukla, “Medical Data Classification using Fuzzy Min Max Neural Network Preceded by Feature Selection through Moth Flame Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111276

@article{Dehariya2020,
title = {Medical Data Classification using Fuzzy Min Max Neural Network Preceded by Feature Selection through Moth Flame Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111276},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111276},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {Ashish Kumar Dehariya and Pragya Shukla}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org