The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Medical Data Classification using Fuzzy Main Max Neural Network Preceded by Feature Selection through Moth Flame Optimization

Author 1: Ashish Kumar Dehariya
Author 2: Pragya Shukla

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0111276

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Prediction of the diseases are possible using medical diagnosis system. This type of health care model can be developed using soft computing techniques. Hybrid approaches of data classification and optimization algorithm increases data classification accuracy. This research proposed applications of Moth Flame optimization (MFO) and Fuzzy Min Max Neural Network (FMMNN) for the development of medical data classification system. Here MFO algorithm considers bulk of features from the disease dataset and produces optimized set of features based on fitness function. MFO is able to avoid local minima problem and this is the main cause behind production of optimal set of features. Optimized features are then passed to FMMNN for classification of malignant and benign cases. As classification is concerned, model experiment achieved 97.74% accuracy for Liver Disorders and 86.95 % accuracy for Pima Indian Diabetes dataset. Improving the medical data classification accuracy is directly related to attain good human health.

Keywords: Moth flame optimization; nature inspired optimization; feature selection; fitness function; fuzzy min-max neural network

Ashish Kumar Dehariya and Pragya Shukla, “Medical Data Classification using Fuzzy Main Max Neural Network Preceded by Feature Selection through Moth Flame Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111276

@article{Dehariya2020,
title = {Medical Data Classification using Fuzzy Main Max Neural Network Preceded by Feature Selection through Moth Flame Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111276},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111276},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {Ashish Kumar Dehariya and Pragya Shukla}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-39 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Your Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • FAQ's
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org