The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110218
PDF

SentiFilter: A Personalized Filtering Model for Arabic Semi-Spam Content based on Sentimental and Behavioral Analysis

Author 1: Mashael M. Alsulami
Author 2: Arwa Yousef AL-Aama

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Unwanted content in online social network services is a substantial issue that is continuously growing and negatively affecting the user-browsing experience. Current practices do not provide personalized solutions that meet each individual’s needs and preferences. Therefore, there is a potential demand to provide each user with a personalized level of protection against what he/she perceives as unwanted content. Thus, this paper proposes a personalized filtering model, which we named SentiFilter. It is a hybrid model that combines both sentimental and behavioral factors to detect unwanted content for each user towards pre-defined topics. An experiment involving 80,098 Twitter messages from 32 users was conducted to evaluate the effectiveness of the SentiFilter model. The effectiveness was measured in terms of the consistency between the implicit feedback derived from the SentiFilter model towards five selected topics and the explicit feedback collected explicitly from participants towards the same topics. Results reveal that commenting behavior is more effective than liking behavior to detect unwanted content because of its high consistency with users’ explicit feedback. Findings also indicate that sentiment of users’ comments does not reflect users’ perception of unwanted content. The results of implicit feedback derived from the SentiFilter model accurately agree with users’ explicit feedback by the indication of the low statistical significance difference between the two sets. The proposed model is expected to provide an effective automated solution for filtering semi-spam content in favor of personalized preferences.

Keywords: Personalization; sentiment analysis; behavioral analysis; spam detection; recommendation systems

Mashael M. Alsulami and Arwa Yousef AL-Aama, “SentiFilter: A Personalized Filtering Model for Arabic Semi-Spam Content based on Sentimental and Behavioral Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110218

@article{Alsulami2020,
title = {SentiFilter: A Personalized Filtering Model for Arabic Semi-Spam Content based on Sentimental and Behavioral Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110218},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110218},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Mashael M. Alsulami and Arwa Yousef AL-Aama}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org