The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110257
PDF

An Intellectual Detection System for Intrusions based on Collaborative Machine Learning

Author 1: Dhikhi T
Author 2: M.S. Saravanan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The necessity for safety of information in a network has inflated due to the impressive growth of web applications. Several methods of intrusion detection are used to detect irregularities which depend on precision, detection frequency, other parameters and are anticipated to familiarize to vigorously varying risk scenes. To accomplish consistent abnormalities detection in a network many machine learning algorithms have been formulated by researchers. A technique based on unsupervised machine learning that use two separate machine learning algorithms to identify anomalies in a network viz convolutional autoencoder and softmax classifier is proposed. These profound models were skilled as well as evaluated on NSLKDD test data sets on the NSLKDD training dataset. Using well-known classification metrics such as accuracy, precision and recall, these machine learning models were assessed. The developed intrusion detection system model experimental findings showed promising outcomes in anomaly detection systems for real-world implementation and is compared with the prevailing definitive machine learning techniques. This strategy increases the detection of network intrusion and offers a renewed intrusion detection study method.

Keywords: Intrusion detection; machine learning; deep learning; convolutional autoencoder; softmax classifier; NSL-KDD dataset

Dhikhi T and M.S. Saravanan, “An Intellectual Detection System for Intrusions based on Collaborative Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110257

@article{T2020,
title = {An Intellectual Detection System for Intrusions based on Collaborative Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110257},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110257},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Dhikhi T and M.S. Saravanan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org