The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110258

Dataset Augmentation for Machine Learning Applications of Dental Radiography

Author 1: Shahid Khan
Author 2: Altaf Mukati

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The performance of any machine learning algorithm heavily depends on the quality and quantity of the training data. Machine learning algorithms, driven by training data can accurately predict and produce the right outcome when trained through enough amount of quality data. In the medical applications, being more critical, the accuracy is of utmost importance. Obtaining medical imaging data, enough to train machine learning algorithm is difficult due to a variety of reasons. An effort has been made to produce an augmented dental radiography dataset to train machine learning algorithms. 116 panoramic dental radiographs have been manually segmented for each tooth producing 32 classes of teeth. Out of 3712 images of individual tooth, 2910 were used for machine learning through general augmentation methods that include rotation, intensity transformation and flipping of the images, creating a massive dataset of 5.12 million unique images. The dataset is labeled and classified into 32 classes. This dataset can be used to train deep convolutional neural networks to perform classification and segmentation of teeth in x-rays, Cone-Beam CT scans and other radiographs. We retrained AlexNet on a subset of 80,000 images of the entire dataset and obtained classification accuracy of 98.88% on 10 classes. The retraining on original dataset yielded 88.31%. The result is evident of nearly a 10% increase in the performance of the classifier trained on the augmented dataset. The training and validation datasets include teeth affected with metal objects. The manually segmented dataset can be used as a benchmark to evaluate the performance of machine learning algorithms for performing tooth segmentation and tooth classification.

Keywords: Data augmentation; Cone-Beam Computed Tomography; dental X-Rays; panoramic; dataset; classification; deep convolutional neural network; benchmark

Shahid Khan and Altaf Mukati, “Dataset Augmentation for Machine Learning Applications of Dental Radiography” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110258

@article{Khan2020,
title = {Dataset Augmentation for Machine Learning Applications of Dental Radiography},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110258},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110258},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Shahid Khan and Altaf Mukati}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org