The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110264
PDF

Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology

Author 1: Ngoc Q. Ly
Author 2: Hieu N. M. Cao
Author 3: Thi T. Nguyen

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, fine-grained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.

Keywords: Person Re-Identification (Re-ID); Pedestrian Attributes Ontology (PAO); Deep Convolution Neuron Network (DCNN); Multi-task Deep Convolution Neuron Network (MDCNN); Local Multi-task Deep Convolution Neuron Network (Local MDCNN); Imbalanced Data Solver (IDS

Ngoc Q. Ly, Hieu N. M. Cao and Thi T. Nguyen, “Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110264

@article{Ly2020,
title = {Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110264},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110264},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Ngoc Q. Ly and Hieu N. M. Cao and Thi T. Nguyen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org