The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110290

Lexical Variation and Sentiment Analysis of Roman Urdu Sentences with Deep Neural Networks

Author 1: Muhammad Arslan Manzoor
Author 2: Saqib Mamoon
Author 3: Song Kei Tao
Author 4: Ali Zakir
Author 5: Muhammad Adil
Author 6: Jianfeng Lu

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sentiment analysis is the computational study of re-views, emotions, and sentiments expressed in the text. In the past several years, sentimental analysis has attracted many concerns from industry and academia. Deep neural networks have achieved significant results in sentiment analysis. Current methods mainly focus on the English language, but for minority languages, such as Roman Urdu that has more complex syntax and numerous lexical variations, few research is carried out on it. In this paper, for sentiment analysis of Roman Urdu, the novel “Self-attention Bidirectional LSTM (SA-BiLSTM)” network is proposed to deal with the sentence structure and inconsistent manner of text representation. This network addresses the limitation of the unidirectional nature of the conventional architecture. In SA-BiLSTM, Self-Attention takes charge of the complex formation by correlating the whole sentence, and BiLSTM extracts context rep-resentations to tackle the lexical variation of attended embedding in preceding and succeeding directions. Besides, to measure and compare the performance of SA-BiLSTM model, we preprocessed and normalized the Roman Urdu sentences. Due to the efficient design of SA-BiLSTM, it can use fewer computation resources and yield a high accuracy of 68.4% and 69.3% on preprocessed and normalized datasets, respectively, which indicate that SA-BiLSTM can achieve better efficiency as compared with other state-of-the-art deep architectures.

Keywords: Sentiment analysis; Self-Attention Bidirectional LSTM (SA-BiLSTM); Roman Urdu language; review classification

Muhammad Arslan Manzoor, Saqib Mamoon, Song Kei Tao, Ali Zakir, Muhammad Adil and Jianfeng Lu, “Lexical Variation and Sentiment Analysis of Roman Urdu Sentences with Deep Neural Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110290

@article{Manzoor2020,
title = {Lexical Variation and Sentiment Analysis of Roman Urdu Sentences with Deep Neural Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110290},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110290},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Muhammad Arslan Manzoor and Saqib Mamoon and Song Kei Tao and Ali Zakir and Muhammad Adil and Jianfeng Lu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org