The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110337
PDF

A Modified Weight Optimization for Artificial Higher Order Neural Networks in Physical Time Series

Author 1: Noor Aida Husaini
Author 2: Rozaida Ghazali
Author 3: Nureize Arbaiy
Author 4: Norhamreeza Abdul Hamid
Author 5: Lokman Hakim Ismail

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Many methods and approaches have been proposed for analyzing and forecasting time series data. There are different Neural Network (NN) variations for specific tasks (e.g., Deep Learning, Recurrent Neural Networks, etc.). Time series forecasting are a crucial component of many important applications, from stock markets to energy load forecasts. Recently, Swarm Intelligence (SI) techniques including Cuckoo Search (CS) have been established as one of the most practical approaches in optimizing parameters for time series forecasting. Several modifications to the CS have been made, including Modified Cuckoo Search (MCS) that adjusts the parameters of the current CS, to improve algorithmic convergence rates. Therefore, motivated by the advantages of these MCSs, we use the enhanced MCS known as the Modified Cuckoo Search-Markov Chain Monté Carlo (MCS-MCMC) learning algorithm for weight optimization in Higher Order Neural Networks (HONN) models. The Lévy flight function in the MCS is replaced with Markov Chain Monté Carlo (MCMC) since it can reduce the complexity in generating the objective function. In order to prove that the MCS-MCMC is suitable for forecasting, its performance was compared with the standard Multilayer Perceptron (MLP), standard Pi-Sigma Neural Network (PSNN), Pi-Sigma Neural Network-Modified Cuckoo Search (PSNN-MCS), Pi-Sigma Neural Network-Markov Chain Monté Carlo (PSNN-MCMC), standard Functional Link Neural Network (FLNN), Functional Link Neural Network-Modified Cuckoo Search (FLNN-MCS) and Functional Link Neural Network-Markov Chain Monté Carlo (FLNN-MCMC) on various physical time series and benchmark dataset in terms of accuracy. The simulation results prove that the HONN-based model combined with the MCS-MCMC learning algorithm outperforms the accuracy in the range of 0.007% to 0.079% for three (3) physical time series datasets.

Keywords: Modified Cuckoo Search Markov Chain Monté Carlo; MCS-MCMC; neural networks; higher order; time series forecasting

Noor Aida Husaini, Rozaida Ghazali, Nureize Arbaiy, Norhamreeza Abdul Hamid and Lokman Hakim Ismail, “A Modified Weight Optimization for Artificial Higher Order Neural Networks in Physical Time Series” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110337

@article{Husaini2020,
title = {A Modified Weight Optimization for Artificial Higher Order Neural Networks in Physical Time Series},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110337},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110337},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Noor Aida Husaini and Rozaida Ghazali and Nureize Arbaiy and Norhamreeza Abdul Hamid and Lokman Hakim Ismail}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org