The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110305
PDF

Classification of Malignant and Benign Lung Nodule and Prediction of Image Label Class using Multi-Deep Model

Author 1: Muahammad Bilal Zia
Author 2: Zhao Juan Juan
Author 3: Xujuan Zhou
Author 4: Ning Xiao
Author 5: Jiawen Wang
Author 6: Ammad Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Lung cancer has been listed as one of the world’s leading causes of death. Early diagnosis of lung nodules has great significance for the prevention of lung cancer. Despite major improvements in modern diagnosis and treatment, the five-year survival rate is only 18%. Before diagnosis, the classification of lung nodules is one important step, in particular, because automatic classification may help doctors with a valuable opinion. Although deep learning has shown improvement in the image classifications over traditional approaches, which focus on handcraft features, due to a large number of intra-class variational images and the inter-class similar images due to various imaging modalities, it remains challenging to classify lung nodule. In this paper, a multi-deep model (MD model) is proposed for lung nodule classification as well as to predict the image label class. This model is based on three phases that include multi-scale dilated convolutional blocks (MsDc), dual deep convolutional neural networks (DCNN A/B), and multi-task learning component (MTLc). Initially, the multi-scale features are derived through the MsDc process by using different dilated rates to enlarge the respective area. This technique is applied to a pair of images. Such images are accepted by dual DCNNs, and both models can learn mutually from each other in order to enhance the model accuracy. To further improve the performance of the proposed model, the output from both DCNNs split into two portions. The multi-task learning part is used to evaluate whether the input image pair is in the same group or not and also helps to classify them between benign and malignant. Furthermore, it can provide positive guidance if there is an error. Both the intra-class and inter-class (variation and similarity) of a dataset itself increase the efficiency of single DCNN. The effectiveness of mentioned technique is tested empirically by using the popular Lung Image Consortium Database (LIDC) dataset. The results show that the strategy is highly efficient in the form of sensitivity of 90.67%, specificity 90.80%, and accuracy of 90.73%.

Keywords: Lung nodule classification; dilated blocks; dual DCNNs; multi-task learning; multi-deep model

Muahammad Bilal Zia, Zhao Juan Juan, Xujuan Zhou, Ning Xiao, Jiawen Wang and Ammad Khan, “Classification of Malignant and Benign Lung Nodule and Prediction of Image Label Class using Multi-Deep Model” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110305

@article{Zia2020,
title = {Classification of Malignant and Benign Lung Nodule and Prediction of Image Label Class using Multi-Deep Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110305},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110305},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Muahammad Bilal Zia and Zhao Juan Juan and Xujuan Zhou and Ning Xiao and Jiawen Wang and Ammad Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org