The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110355
PDF

Beyond Sentiment Classification: A Novel Approach for Utilizing Social Media Data for Business Intelligence

Author 1: Ibrahim Said Ahmad
Author 2: Azuraliza Abu Bakar
Author 3: Mohd Ridzwan Yaakub
Author 4: Mohammad Darwich

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Extracting people’s opinions from social media has attracted a large number of studies over the years. This is as a result of the growing popularity of social media. People share their sentiments and opinions via these social media platforms. Therefore, extracting and analyzing these sentiments is beneficial in many ways, for example, business intelligence. However, despite a large number of studies on extracting and analyzing social media data, only a fraction of these studies focuses on its practical application. In this study, we focus on the use of product reviews for identifying whether the reviews signify the intention of purchase or not. Therefore, we propose a novel lexicon-based approach for the classification of product reviews into those that signify the intention of purchase and those that do not signify the intention of purchase. We evaluated our proposed approach using a benchmark dataset based on accuracy, precision, and recall. The experimental results obtained prove the efficiency of our proposed approach to purchase intention identification.

Keywords: Purchase intention; sentiment analysis; lexicon; social media; product reviews

Ibrahim Said Ahmad, Azuraliza Abu Bakar, Mohd Ridzwan Yaakub and Mohammad Darwich, “Beyond Sentiment Classification: A Novel Approach for Utilizing Social Media Data for Business Intelligence” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110355

@article{Ahmad2020,
title = {Beyond Sentiment Classification: A Novel Approach for Utilizing Social Media Data for Business Intelligence},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110355},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110355},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Ibrahim Said Ahmad and Azuraliza Abu Bakar and Mohd Ridzwan Yaakub and Mohammad Darwich}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org