The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110377
PDF

Performance Analysis of Machine Learning Techniques for Smart Agriculture: Comparison of Supervised Classification Approaches

Author 1: Rhafal Mouhssine
Author 2: Abdoun Otman
Author 3: El khatir Haimoudi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Agriculture form one of the most important aspects of life necessities, it is responsible to feed 7.7 billion person for the time being, and it is expected to supply more than 9.6 billion individual in 2050, the thing that made classical farming insufficient, and give birth to the notion of smart farming, and the race has begun toward using the latest technologies in the field. They integrate the Internet of Things (IoT), automation, Artificial Intelligence (AI), etc. And as researchers from a country that highly depends on agriculture, we have decided to also contribute to this evolution, and we chose Machine learning (ML) as our entrance to the field to satisfy the need for automated classification of the different products produced by a farm. In this work, we wanted to solve the problem of automatic classification of agricultural products, without the need of any human intervention, and we concentrate on the classification of red fruits, due to our proximity to a location that its product is red fruits. In other words, we are doing a comparative study among the well-known approaches that are used in image classification, and we are applying the best-found method to correctly classify the pictures of red fruits. And this empirically leads us to achieve great results as shown in the numerical result area.

Keywords: Support vector machine; K-nearest neighbor; deep neural networks; convolutional neural networks; smart agriculture; Cifar10

Rhafal Mouhssine, Abdoun Otman and El khatir Haimoudi, “Performance Analysis of Machine Learning Techniques for Smart Agriculture: Comparison of Supervised Classification Approaches” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110377

@article{Mouhssine2020,
title = {Performance Analysis of Machine Learning Techniques for Smart Agriculture: Comparison of Supervised Classification Approaches},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110377},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110377},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Rhafal Mouhssine and Abdoun Otman and El khatir Haimoudi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org