The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110308
PDF

An Ontology Driven ESCO LOD Quality Enhancement

Author 1: Adham Kahlawi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The labor market is a system that is complex and difficult to manage. To overcome this challenge, the European Union has launched the ESCO project which is a language that aims to describe this labor market. In order to support the spread of this project, its dataset was presented as linked open data (LOD). Since LOD is usable and reusable, a set of conditions have to be met. First, LOD must be feasible and high quality. In addition, it must provide the user with the right answers, and it has to be built according to a clear and correct structure. This study investigates the LOD of ESCO, focusing on data quality and data structure. The former is evaluated through applying a set of SPARQL queries. This provides solutions to improve its quality via a set of rules built in first order logic. This process was conducted based on a new proposed ESCO ontology.

Keywords: ESCO; linked open data; ontology; semantic web; data quality; SPARQL; OWL; metadata

Adham Kahlawi, “An Ontology Driven ESCO LOD Quality Enhancement” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110308

@article{Kahlawi2020,
title = {An Ontology Driven ESCO LOD Quality Enhancement},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110308},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110308},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Adham Kahlawi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org