The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110381
PDF

Improved Candidate Generation for Pedestrian Detection using Background Modeling in Connected Vehicles

Author 1: Ghaith Al-Refai
Author 2: Osamah A. Rawashdeh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Pedestrian detection is widely used in today’s ve-hicle safety applications to avoid vehicle-pedestrian accidents. The current technology of pedestrian detection utilizes onboard sensors such as cameras, radars, and Lidars to detect pedestrians, then information is used in a safety feature like Automatic Emer-gency Braking (AEB). This paper proposes pedestrian detection system using vehicle connectivity, image processing and computer vision algorithms. In the proposed model, vehicles collect image frames using on-vehicle cameras, then frames are transferred to the Infrastructure database using Vehicle to Infrastructure communication (V2I). Image processing and machine learning algorithms are used to process the infrastructure images for pedestrian detection. Background modeling is used to extract the foreground regions in an image to identify regions of interest for candidate generation. This paper explains the algorithms of the infrastructure pedestrian detection system, which includes image registration, background modeling, image filtering, candi-date generation, feature extraction, and classification. The paper explains the MATLAB implementation of the algorithm with a road-collected dataset and provides analysis for the detection results with respect to detection accuracy and runtime. The algorithm implementation results show an improvement in the detection performance and algorithm runtime.

Keywords: Pedestrian detection; computer vision; image pro-cessing; machine learning; vehicle safety

Ghaith Al-Refai and Osamah A. Rawashdeh, “Improved Candidate Generation for Pedestrian Detection using Background Modeling in Connected Vehicles” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110381

@article{Al-Refai2020,
title = {Improved Candidate Generation for Pedestrian Detection using Background Modeling in Connected Vehicles},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110381},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110381},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Ghaith Al-Refai and Osamah A. Rawashdeh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org