The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110401
PDF

A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification

Author 1: Xin Yang
Author 2: Paul T. Schrader
Author 3: Ning Zhang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 4, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The objective of this study is to implement deep neural network (DNN) models to classify autism spectrum disorder (ASD) patients and typically developing (TD) participants. The experimental design utilizes functional connectivity features extracted from resting-state functional magnetic resonance imaging (rs-fMRI) originating in the multisite repository Autism Brain Imaging Data Exchange (ABIDE) over a significant set of training samples. Our methodology and results have two main parts. First, we build DNN models using the TensorFlow framework in python to classify ASD from TD. Here we acquired an accuracy of 75.27%. This is significantly higher than any known accuracy (71.98%) using the same data. We also obtained a recall of 74% and a precision of 78.37%. In summary, and based on our literature review, this study demonstrated that our DNN (128-64) model achieves the highest accuracy, recall, and precision on the ABIDE dataset to date. Second, using the same ABIDE data, we implemented an identical experimental design with four distinct hidden layer configuration DNN models each preprocessed using four different industry accepted strategies. These results aided in identifying the preprocessing technique with the highest accuracy, recall, and precision: the Configurable Pipeline for the Analysis of Connectomes (CPAC).

Keywords: DNN; ASD; rs-fMRI; ABIDE; CPAC

Xin Yang, Paul T. Schrader and Ning Zhang, “A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 11(4), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110401

@article{Yang2020,
title = {A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110401},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110401},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {4},
author = {Xin Yang and Paul T. Schrader and Ning Zhang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org