The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.01104107
PDF

Arabic Word Recognition System for Historical Documents using Multiscale Representation Method

Author 1: Said Elaiwat
Author 2: Marwan Abu-Zanona

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 4, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the last decades, huge efforts have been made to develop automated handwriting recognition systems. The task of recognition usually involves several complex processes includ-ing image pre-processing, segmentation, features extracting and matching. This task usually gets harder by processing historical documents as they involve skews, document degradation and structure noise. Although, the success that has been achieved in English language, the recognition of handwritten Arabic still constitutes a major challenge for many reasons. The characteristic of Arabic language, as a Semitic language, differs from other languages (e.g., European languages) in several aspects such as complex structure, implicit characters, concatenation and, writing styles and direction. This work proposes a full recognition system for the task of word recognition from from Arabic historical documents. In the proposed system, a novel feature extraction method is presented to define robust features from Arabic words. Prior Feature extraction, each input image is pre-processed and segmented resulting in segmented words. After that, the features of each word/sub-word are defined based on Multiscale Convexity Concavity(MCC) analysis of contour word shape. For feature matching, a circular shift method is proposed to burn the computational cost instead of using traditional dynamic time warping (DTW) which exhibits high computational cost. Finally, the proposed algorithm has been evaluated under well-known dataset, namely, Ibn Sina, and showed high performance for historical documents with low computational cost.

Keywords: Word recognition; multiscale convexity concavity analysis; historical documents; dynamic time warping

Said Elaiwat and Marwan Abu-Zanona, “Arabic Word Recognition System for Historical Documents using Multiscale Representation Method” International Journal of Advanced Computer Science and Applications(IJACSA), 11(4), 2020. http://dx.doi.org/10.14569/IJACSA.2020.01104107

@article{Elaiwat2020,
title = {Arabic Word Recognition System for Historical Documents using Multiscale Representation Method},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.01104107},
url = {http://dx.doi.org/10.14569/IJACSA.2020.01104107},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {4},
author = {Said Elaiwat and Marwan Abu-Zanona}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org