The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110418
PDF

Local Neighborhood-based Outlier Detection of High Dimensional Data using different Proximity Functions

Author 1: Mujeeb Ur Rehman
Author 2: Dost Muhammad Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 4, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent times, dimension size has posed more challenges as compared to data size. The serious concern of high dimensional data is the curse of dimensionality and has ultimately caught the attention of data miners. Anomaly detection based on local neighborhood like local outlier factor has been admitted as state of art approach but fails when operated on the high number of dimensions for the reason mentioned above. In this paper, we determine the effects of different distance functions on an unlabeled dataset while digging outliers through the density-based approach. Further, we also explore findings regarding runtime and outlier score when dimension size and number of nearest neighbor points (min_pts) are varied. This analytic research is also very appropriate and applicable in the domain of big data and data science as well.

Keywords: High dimensional data; density-based anomaly detection; local outlier; outlier detection

Mujeeb Ur Rehman and Dost Muhammad Khan, “Local Neighborhood-based Outlier Detection of High Dimensional Data using different Proximity Functions” International Journal of Advanced Computer Science and Applications(IJACSA), 11(4), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110418

@article{Rehman2020,
title = {Local Neighborhood-based Outlier Detection of High Dimensional Data using different Proximity Functions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110418},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110418},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {4},
author = {Mujeeb Ur Rehman and Dost Muhammad Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org