The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110427
PDF

Arrhythmia Classification using 2D Convolutional Neural Network

Author 1: Robby Rohmantri
Author 2: Nico Surantha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 4, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Arrhythmia is an abnormal situation of heartbeat rate that may cause a critical condition to our body and this condition gets more dangerous as our cardiovascular system gets more vulnerable as we grow older. To diagnose this abnormality, the arrhythmia expert or cardiologist uses an electrocardiogram (ECG) by analyzing the pattern. ECG is a heartbeat signal that is produced by a tool called an electrocardiograph sensor that records the electrical impulses produced by the heart. Convolutional Neural Networks (CNN) is often used by researchers to classify ECG signals to Arryhtmia classes. The state-of-the-art research had applied CNN 2D (CNN 2D) with accuracy up to 99% with 128x128 image size obtained by transforming the ECG signal. In this paper, authors try to classify arrhythmia disorder with a different approach by creating simpler image classifier using CNN 2D with a smaller variety of input size that is smaller than state-the-art input and group the classes based on transformed ECG signal from MIT-BIH Arrhythmia database with the purpose to know what the most optimum input and the best accuracy to classify ECG signal image. The result of this research had produced an accuracy of up to 98.91% for 2 Classes, 98.10% for 7 Classes dan 98.45% for 8 Classes.

Keywords: Convolutional neural network; CNN; CNN 2D; image classifier; electrocardiogram; ECG; arrhythmia

Robby Rohmantri and Nico Surantha, “Arrhythmia Classification using 2D Convolutional Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 11(4), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110427

@article{Rohmantri2020,
title = {Arrhythmia Classification using 2D Convolutional Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110427},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110427},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {4},
author = {Robby Rohmantri and Nico Surantha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org